Quantum imaging of biological organisms through spatial and polarization entanglement

Abstract

Quantum imaging holds potential benefits over classical imaging but has faced challenges such as poor signal-to-noise ratios, low resolvable pixel counts, difficulty in imaging biological organisms, and inability to quantify full birefringence properties. Here, we introduce quantum imaging by coincidence from entanglement (ICE), using spatially and polarization-entangled photon pairs to overcome these challenges. With spatial entanglement, ICE offers higher signal-to-noise ratios, greater resolvable pixel counts, and the ability to image biological organisms. With polarization entanglement, ICE provides quantitative quantum birefringence imaging capability, where both the phase retardation and the principal refractive index axis angle of an object can be remotely and instantly quantified without changing the polarization states of the photons incident on the object. Furthermore, ICE enables 25 times greater suppression of stray light than classical imaging. ICE has the potential to pave the way for quantum imaging in diverse fields, such as life sciences and remote sensing.

Publication
Science Advances, vol. 10, no. 10, pp. eadk1495
Yide Zhang
Yide Zhang
NIH K99 Postdoctoral Fellow

My research is interdisciplinary and focused on developing new types of optical imaging techniques that could advance the work of other researchers and medical personnel in a wide variety of fields. Currently, I am developing next-generation photoacoustic and ultrafast imaging techniques that can observe biological and physical phenomena that are too fast to be imaged with existing methods. The observation of the ultrafast phenomena could provide a better understanding of the fundamentals of life and physical sciences. I am also developing novel quantum imaging approaches that can investigate biological organisms with an imaging performance that cannot be achieved using classical optical imaging. In my free time, I enjoy cooking, hiking, cycling, and traveling.

comments powered by Disqus

Related