Experimental full-domain mapping of quantum correlation in Clauser-Horne-Shimony-Holt scenarios

Abstract

Quantum correlation is critical in quantum information applications, and numerous inequalities have been established to quantify the non-classical correlations such as the Bell nonlocality and quantum steering. We introduce an experimental method to map full-domain correlation for nonlocality and quantum steering in the Clauser-Horne-Shimony-Holt scenarios. This approach accounts for detection imperfections and simplifies interpretations, answering fundamental questions about nonlocality and quantum steering. Additionally, we illustrate its utility in calibrating an entanglement-based quantum key distribution protocol with arbitrary bipartite states. Our correlation maps offer a direct, straightforward contribution to quantum information applications.

Publication
SPIE Photonics West 2024, San Francisco, California USA
Yide Zhang
Yide Zhang
NIH K99 Postdoctoral Fellow

My research is interdisciplinary and focused on developing new types of optical imaging techniques that could advance the work of other researchers and medical personnel in a wide variety of fields. Currently, I am developing next-generation photoacoustic and ultrafast imaging techniques that can observe biological and physical phenomena that are too fast to be imaged with existing methods. The observation of the ultrafast phenomena could provide a better understanding of the fundamentals of life and physical sciences. I am also developing novel quantum imaging approaches that can investigate biological organisms with an imaging performance that cannot be achieved using classical optical imaging. In my free time, I enjoy cooking, hiking, cycling, and traveling.

comments powered by Disqus

Related