Optical-resolution photoacoustic microscopy with a needle-shaped beam

Abstract

Optical-resolution photoacoustic microscopy can visualize wavelength-dependent optical absorption at the cellular level. However, this technique suffers from a limited depth of field due to the tight focus of the optical excitation beam, making it challenging to acquire high-resolution images of samples with uneven surfaces or high-quality volumetric images without z scanning. To overcome this limitation, we propose needle-shaped beam photoacoustic microscopy, which can extend the depth of field to around a 28-fold Rayleigh length via customized diffractive optical elements. These diffractive optical elements generate a needle-shaped beam with a well-maintained beam diameter, a uniform axial intensity distribution and negligible sidelobes. The advantage of using needle-shaped beam photoacoustic microscopy is demonstrated via both histology-like imaging of fresh slide-free organs using a 266 nm laser and in vivo mouse-brain vasculature imaging using a 532 nm laser. This approach provides new perspectives for slide-free intraoperative pathological imaging and in vivo organ-level imaging.

Publication
Nature Photonics, vol. 17, no. 1, pp. 89-95
Yide Zhang
Yide Zhang
NIH K99 Postdoctoral Fellow

My research is interdisciplinary and focused on developing new types of optical imaging techniques that could advance the work of other researchers and medical personnel in a wide variety of fields. Currently, I am developing next-generation photoacoustic and ultrafast imaging techniques that can observe biological and physical phenomena that are too fast to be imaged with existing methods. The observation of the ultrafast phenomena could provide a better understanding of the fundamentals of life and physical sciences. I am also developing novel quantum imaging approaches that can investigate biological organisms with an imaging performance that cannot be achieved using classical optical imaging. In my free time, I enjoy cooking, hiking, cycling, and traveling.

comments powered by Disqus

Related