Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo

Abstract

Photoacoustic tomography (PAT) has demonstrated versatile biomedical applications, ranging from tracking single cells to monitoring whole-body dynamics of small animals and diagnosing human breast cancer. Currently, PAT has two major implementations: photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM). PACT uses a multi-element ultrasonic array for parallel detection, which is relatively complex and expensive. In contrast, PAM requires point-by-point scanning with a single-element detector, which has a limited imaging throughput. The trade-off between the system cost and throughput demands a new imaging method. To this end, we have developed photoacoustic topography through an ergodic relay (PATER). PATER can capture a wide-field image with only a single-element ultrasonic detector upon a single laser shot. This protocol describes the detailed procedures for PATER system construction, including component selection, equipment setup and system alignment. A step-by-step guide for in vivo imaging of a mouse brain is provided as an example application. Data acquisition, image reconstruction and troubleshooting procedures are also elaborated. It takes ~130 min to carry out this protocol, including ~60 min for both calibration and snapshot wide-field data acquisition using a laser with a 2-kHz pulse repetition rate. PATER offers low-cost snapshot wide-field imaging of fast dynamics, such as visualizing blood pulse wave propagation and tracking melanoma tumor cell circulation in mice in vivo. We envision that PATER will have wide biomedical applications and anticipate that the compact size of the setup will allow it to be further developed as a wearable device to monitor human vital signs.

Publication
Nature Protocols, vol. 16, no. 5, pp. 2381-2394
Yide Zhang
Yide Zhang
NIH K99 Postdoctoral Fellow

My research is interdisciplinary and focused on developing new types of optical imaging techniques that could advance the work of other researchers and medical personnel in a wide variety of fields. Currently, I am developing next-generation photoacoustic and ultrafast imaging techniques that can observe biological and physical phenomena that are too fast to be imaged with existing methods. The observation of the ultrafast phenomena could provide a better understanding of the fundamentals of life and physical sciences. I am also developing novel quantum imaging approaches that can investigate biological organisms with an imaging performance that cannot be achieved using classical optical imaging. In my free time, I enjoy cooking, hiking, cycling, and traveling.

comments powered by Disqus

Related