Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudo random number generators

Abstract

This paper investigates the problem of exponential lag synchronization control of memristive neural networks (MNNs) via the fuzzy method and applications in pseudorandom number generators. Based on the knowledge of memristor and recurrent neural networks, the model of MNNs is established. Then, considering the state-dependent properties of memristor, a fuzzy model of MNNs is employed to provide a new way of analyzing the complicated MNNs with only two subsystems, and update laws for the connection weights of slave systems and controller gain are designed to make the slave systems exponentially lag synchronized with the master systems. Two examples about synchronization problems are presented to show the effectiveness of the obtained results, and an application of the obtained theory is also given in the pseudorandom number generator.

Publication
IEEE Transactions on Fuzzy Systems, vol. 22, no. 6, pp. 1704-1713
Yide Zhang
Yide Zhang
NIH K99 Postdoctoral Fellow

My research is interdisciplinary and focused on developing new types of optical imaging techniques that could advance the work of other researchers and medical personnel in a wide variety of fields. Currently, I am developing next-generation photoacoustic and ultrafast imaging techniques that can observe biological and physical phenomena that are too fast to be imaged with existing methods. The observation of the ultrafast phenomena could provide a better understanding of the fundamentals of life and physical sciences. I am also developing novel quantum imaging approaches that can investigate biological organisms with an imaging performance that cannot be achieved using classical optical imaging. In my free time, I enjoy cooking, hiking, cycling, and traveling.

comments powered by Disqus

Related