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   Abstract—Traditional recurrent neural networks are composed
of  capacitors,  inductors,  resistors,  and  operational  amplifiers.
Memristive neural  networks  are  constructed  by  replacing  resist-
ors with memristors. This paper focuses on the memory analysis,
i.e.  the  initial  value  computation,  of  memristors.  Firstly,  we
present  the  memory  analysis  for  a  single  memristor  based  on
memristors' mathematical models with linear and nonlinear drift.
Secondly, we present the memory analysis for two memristors in
series  and parallel.  Thirdly,  we  point  out  the  difference  between
traditional neural networks and those that are memristive. Based
on  the  current  and  voltage  relationship  of  memristors,  we  use
mathematical analysis and SPICE simulations to demonstrate the
validity of our methods.
    Index Terms—Dopant drift,  memory,  memristive neural  networks,
memristor.

I.  Introduction

THE memristor  was  first  defined  by  Chua  [1]  and  can  be
described by the following mathematical model [2]

dx(t)
dt
= f (x(t),u(t), t)

y(t) = g(x(t),u(t), t)u(t)
(1)

u(t) y(t)
x(t) f (x(t),u(t), t) n

g(x(t),u(t), t)

where ,  are  input  and  output  of  memristive  systems,
respectively.  is  the state variable,  is  a -di-
mensional vector function and  is the generalized
system  response.  Williams  and  his  colleagues  transform  the
concept  of  memristors  into  the  physical  devices  [3],  whose
structure  diagram is  shown in Fig. 1. The  memristor  is  com-

TiO2
Ron Roff

posed of a two-layer  thin film, two platinum contacts, a
doped  region ,  and  an  undoped  region . D, w are  the
thickness of  the  film  and  the  width  of  the  doped  region,  re-
spectively.  Later,  Chua  points  out  that  all  two-terminal  non-
volatile  memory  devices  based  on  resistance  switching  are
memristors, regardless of the device material and physical op-
erating mechanisms [4].

The  memristor  has  various  applications  for  its  nano-scale
size  and  memory  property.  For  example,  it  is  used  to
implement  chaotic  circuits  [5],  [6],  memristor  oscillators  [7],
and  neural  synapses  [8].  Snider et  al.  adopt  memristors  in
neuromorphic  applications  to  simulate  learning,  adaptive  and
spontaneous  behaviors  and  to  implement  synaptic  weights  in
artificial neural networks [9], [10]. Pershin and Di Ventra give
an  experimental  demonstration  for  associative  memory  with
memristive  neural  networks  [11].  Then  the  memristor  is
employed as a nonvolatile memory storage device [12],  [13].
Furthermore,  it  has  also  been  used  to  simulate  the  human
brain’s  hierarchical  temporal  memory,  short-term,  long-term
memory [14], [15] and memristive recurrent neural networks.
Meanwhile,  memristors  have  also  been  harnessed  for  image
processing,  adaptive  filters,  digital  logic,  neuromophic
engineering, digital and quantum computation [16], [17], etc.

x(t)

The dynamic properties of memristors are the foundation for
its  applications;  thus  memristors  with  different  materials  and
configurations are made for dynamic analysis experiments [18],
[19].  Williams et  al.  [3]  present  the  mathematical  model  for
memristors  and  show  its  fingerprint  characteristic  with  a
pinched hysteresis current i-voltage v loop. Based on Williams’
mathematical  model  of  memristors,  Wang  [20]  derives  the
formula  of  the  internal  state  and  obtains  the  analytical
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Fig. 1.     The schematic diagram of the HP memristor. (a) The diagram of the
HP memristor model. (b) The circuit symbol of the memristor, showing the
positive and negative polarities.
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i(t) v(t)

Imres = f (Vmres)
Imres Vmres

expression of the current  and the voltage . Considering
the doped materials’ nonlinear drift, Biolek et al. [21] introduce
window  functions  and  give  the  SPICE  model  of
memristors.Using  Bernoulli  dynamics,  Drakakis et  al.  [22]
derive the analytic description,  which defines
the  relation  between  the  current  and  the  voltage 
under the assumption of nonlinear dopant drift. Wang et al. [23]
and  Zhang et  al.  [24]  propose  a  piecewise  linear  (PWL)
memristance  model  for  studying  dynamic  properties  of
memristors.  For  single  memristors,  Biolek et  al.  [25],  [26].
demonstrate a methodology to obtain the analytical solution of
a  memristor’s  voltage/current  response  under  the  current/
voltage excitation.  For  the  properties  of  multiple  memristors,
Bao et al. [27] give the voltage-current relationship of parallel
memristors.  Kim et  al.  [28],  [29]  analyze  the  composite
behavior  of  multiple  connected  memristors  under  the
assumption that all memristors should reach a stable state. Then
they construct a memristor emulator which could be connected
in serial, parallel, or hybrid, simplifying the study of multiple
memristors.

v(t) i(t)

The  memristive  recurrent  neural  networks  (MRNNs)  are
presented  by  replacing  linear  resistors  with  memristors  in
classical  recurrent  neural  networks  circuits.  There  are  some
compound  results  about  the  dynamical  characteristics  of  the
MRNNs [30]–[33]. Furthermore, we found that the MRNNs are
a family of neural networks [34]. The MRNNs can be region
stable and convergent to a sub neural network in the family of
neural networks. Such a convergent result is dependent on the
initial values of memristive synapses and network states. Hence,
it is important to locate the initial states of memristive synapses
and  analyze  the  memory  property  of  memristors.  Although
memory analysis has been discussed in the existing literature,
determining how to locate the state of a memristor is scarcely
discussed.  With  this  motivation,  we  investigate  the  memory
property  of  a  memristor  based  on  the  relation  between  its
voltage  and current  and give the method to locate the
initial  states  of  the  memristive  synapses.  Our  analysis
comprehensively includes memristors under the assumptions of
both  linear  and  nonlinear  dopant  drift.  We  also  extend  the
methods to obtain the initial states of two memristors connected
in  series  and  parallel,  whose  initial  states  can  be  obtained
simultaneously  with  only  a  few  measurements  and  one
integration. SPICE simulations have been conducted for each
presented method. The simulation results convincingly confirm
the  viability  of  our  approaches.  The  rest  of  this  paper  is
organized  as  follows:  in  Section  II,  we  analyze  the  memory
property of the memristor with linear and nonlinear dopant drift
under  a  current  and  a  voltage  source,  respectively.  Further
discussion on the memory property of two series- or parallel-
connected  memristors,  as  well  as  the  algorithm  to  locate  the
initial states of memristive synapses, are provided in Section III.
Finally, Section IV concludes the paper.

II.  Memory Analysis for One Memristor

In  this  section,  we  discuss  a  method  to  compute  the  initial
value of a single memristor under voltage and current sources
by using the memristor models with linear and nonlinear dopant
drift.

A.  Linear Dopant Drift With Current Excitation
In  this  section,  we  consider  the  memory  of  single

memristive  synapses  based  on  Williams’s  memristor  model
[3] as follows:

v(t) =
(
Ron

w(t)
D
+Roff

(
1− w(t)

D

))
i(t)

dw(t)
dt

= µV
Ron

D
i(t) (2)

i(t) µV
v(t)

x(t) = w(t)/D

where ,  are the current through the device and the aver-
age  ionic  mobility,  respectively;  is  the  applied  voltage
source. Let  be the state variable of the memris-
tor, as in (1); then, (2) can be rewritten as

v(t) = (Ronx(t)+Roff(1− x(t)))i(t)
dx(t)

dt
= µV

Ron

D2 i(t) (3)

x(t) ∈ [0,1] M(t) = Ronx(t)+Roff(1− x(t))

i(t) = i0 sin(ωt)

i0 =
ω = 2π rad/s x(t0) = 0.1 t0 = 0 s Ron = 100Ω r = Roff/Ron =

D = 10−6 cm µV = 10−10 cm2/sV

with . Let . A pinched
hysteresis  loop  figure,  the  fingerprint  characteristic  of  the
memristor,  can  be  obtained  by  applying  a  sinusoidal  current
source  to the  memristor.  An  HSPICE simula-
tion is conducted and the result is shown in Fig. 2. The simu-
lation  parameters  are  set  as  following:  200 μA,

, , , , 
160, , .

[Ron,Roff]
Remark 1: From (2) and (3), the memristance is variable in

the interval . The memristance will be changed when
the voltage or the current source is applied to the device. The
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Fig. 2.     The dynamical characteristics of the linear HP memristor. (a) The
linear memristor’s fingerprint characteristic: pinched hysteresis loop figure.
(b) The change of the state , applied current source  and the corres-
ponding voltage  of the memristor.
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M(t0) = Ronx(t0)+Roff(1− x(t0))
initial  value  of  the  memristor  is  the  memristance

 before  the  voltage  or  the
current source is applied. The initial value can be memorized
by  the  memristor  and  it  affects  memristance  variation.  This
point,  however,  has  not  been  discussed  in  the  literature.  The
simulation  parameters  are  chosen  by  using  those  in  [3].  We
compute the initial state of the memristor with the voltmeter-
ammeter  method  and  consider  two  cases,  i.e.,  current
excitation  and  voltage  excitation,  as  shown  in Fig. 3.  The
developed methods are for linear and nonlinear dopant drift.

ξ = µV
Ron

D2Let , then we get

dx(t)
dt
= ξi(t) (4)

and

i(t) =
1
ξ

dx(t)
dt
. (5)

t = t0
q(t) =

r
i(t)dt q(t0) = 0

∀t > t0

We  apply  a  current  source  at  time  and  let
, .  Then  we  integrate  both  sides  of  (5)

for , thus we have
w t

t0
i(s)ds =

1
ξ

w t

t0

dx(s)
ds

ds

q(t) =
1
ξ

(x(t)− x(t0))
(6)

and

x(t) = ξq(t)+ x(t0). (7)
Substituting (7) into (3),

v(t) = (Roff + (Ron−Roff)(ξq(t)+ x(t0)))i(t) (8)
and then

x(t0) =
v(t)−Roff i(t)

(Ron−Roff)i(t)
− ξq(t) (9)

i(t) q(t) =
r

i(t)dt v(t)
Roff Ron ξ

where  is the known current source, , and 
can be measured with a voltmeter. , ,  are known para-
meters. Therefore we get the formula for the initial state of a
memristor with linear dopant drift.

x(t0)

i(2.73) v(2.73)

Next  we  verify  this  method  with  an  HSPICE  simulation.
Predetermining  to be 0.28, we run the circuit in Fig. 3(a)
for 2.73 s,  while other parameters are the same with those in
Fig. 2.  The  simulation  process  is  presented  in Fig. 4.  After
2.73 s,  the  current  and  voltage  across  the
memristor  are –198.4229  μA  and –1.16128  V,  respectively.

q(2.73) = 3.582×
10−5C i(t) t = 0

x(t0) = 0.28

Since the current source is sinusoidal, we get 
 by integrating  from  to t = 2.73 s. Therefore we

can apply the mathematical method and get  which
matches  the  value  we  predetermined.  The  result  verifies  that
our  method  of  applying  current  excitation  to  determine  the
initial state of a linear memristor is feasible.

B.  Linear Dopant Drift With Voltage Excitation

x(t0) β = D2/µV

In this section, we consider the voltage excitation and drive
the formula for . In (3), let , and then

v(t) = β(x(t)+
Ro f f

Ron
(1− x(t)))

dx(t)
dt
. (10)

t = t0
φ(t) =

r
v(t)dt r = Roff/Ron, φ(t0) = 0

∀t > t0

We  apply  a  voltage  source  at  time  and  let
,  and .  Then  we  integrate

both sides of (10) for ,w t

t0
v(s)ds =

w t

t0
β(x(s)+ r(1− x(s)))dx(s)

φ(t) = β
(

1− r
2

x2(t)+ rx(t)+ c
)

(11)

where

c =
r−1

2
x2(t0)− rx(t0). (12)

c
x(t) t = t0

c i(t)
v(t) x(t) ∈ [0,1]

It  is  easy  to  find  that  the  constant  of  the  integration  is
dependent  on  initial  value  of  at .  Therefore  the
memory  effect  of  memristors  is  attributed  to  the  integration
constant . Next we deduce the analytic expression of  and

. Since , from (11), we get

x(t) =
r−

√
r2+2(r−1)(−φ(t)

β + c)

r−1
.

(13)

tDifferentiating (13) with respect to time , then we obtain

dx(t)
dt
=

v(t)

β

√
r2+2(r−1)

(
−φ(t)
β
+ c

) (14)

cin which constant  is not removed. Based on (3), we have
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Fig. 3.     Circuits for measuring the initial state of a memristor, under the ex-
citation of (a) a current source and (b) a voltage source.  and  are volt-
meter and ammeter, respectively.
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Fig. 4.     Simulation process of a linear memristor under the current source
for 2.73 s.
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i(t) =
v(t)

Ron

√
r2+2(r−1)

(
−φ(t)
β
+ c

) . (15)

c i(t) , 0From (15), we can obtain  by solving (15) with  as

c =

(
v(t)

Roni(t)

)2

− r2

2(r−1)
+
φ(t)
β
. (16)

x(t0)Then by (12), the initial state  can be obtained
c =

(
v(t)

Roni(t)

)2

− r2

2(r−1)
+
φ(t)
β

x(t0) =
−r+

√
r2+2(r−1)c
1− r

(17)

v(t) i(t)
r Ron β φ(t)

φ(t) =
w

v(t)dt x(t0)

where  is the applied voltage source,  can be measured
with an ammeter, , ,  are known and  can be calcu-
lated by . So  can be deduced from (17) if
it is unknown.

v(t) = v0 sin(ωt)
v0 = 1V ω = 2π rad/s

t0 = 0 s Ron = 100Ω r = 160
D = 10−6 cm µV = 10−10 cm2/sV

v(4.21) =
i(4.21) = 120.7629 μA

φ(t)
t = 0 t = 4.21 s φ(4.21) = 0.1196 Wb

The  result  can  be  easily  examined  with  a  simulation.  We
simulate  the  circuit Fig. 3(b) on  HSPICE.  The initial  state  of
the  linear  memristor  is  predetermined  as  0.37.  The  applied
voltage is a simple sinusoidal voltage source ,
where , . The other simulation parameters
are  set  as  following: , , ,

, .  We  run  the  simulation  for
4.21 s.  At  the  end  of  the  simulation,  we  get 
968.5832 mV and . Because the applied
voltage  source  is  sinusoidal,  can  be  calculated  from  the
integration  from  to : .
Thus  we  can  apply  the  mathematical  method  in  (17)  and
obtain

c = −48.3164, x(t0) = 0.37
x(t0)which is the same with what we predetermined for . From

the  result,  the  viability  of  our  method has  been  examined  by

the simulation.

C.  Nonlinear Dopant Drift With Current Excitation

x(t0)
In this  section,  we will  show the methods to determine the

initial  state  of  the  memristor  under  the  assumption  of
nonlinear  dopant  drift.  For  the  nonlinear  memristor,  the
descriptive model should be adjusted from (3) to

v(t) = (Ronx(t)+Roff(1− x(t)))i(t)
dx(t)

dt
= µV

Ron

D2 i(t) f (x(t)) (18)

f (x(t)) f (0) = f (1) = 0where  is  a  window function  such  that 
ensures no drift at boundaries. The window function in model
(18) is

f (x) = 1− (2x−1)2p (19)
p f (x)

p = 1,2,5 p

p = 1

in  which  is  a  positive  integer.  is  shown  in Fig. 6 for
, respectively. As  increases, the curve get flatter in

the middle and becomes steeper at the boundaries. If not spe-
cified, all nonlinear memristors are configured as  in the
rest of this paper.

p = 1Taking  in (19) and combing with (18), we get

v(t) = (Ronx(t)+Roff(1− x(t)))i(t)
dx(t)

dt
= 4µV

Ron

D2 x(t)(1− x(t))i(t). (20)

i− v

i(t) = i0 sin(ωt)

i0 = 800 μA
ω = 2π rad/s r = 160 D = 10−6 cm µV = 10−10 cm2/sV

The  fingerprint  characteristic  of  the  memristor  with
nonlinear  dopant  drift,  a  bow-tie  shape  figure,  can  be
generated  by  applying  a  sinusoidal  current  source

 to  the  memristor.  Based  on  (20),  an  HSPICE
simulation is performed and the result is shown in Fig 7. The
simulation  parameters  are  set  as  following: ,

, , , .
ξ = µVRon/D2Let  and simplify (20) as

dx(t)
dt
= 4ξx(t)(1− x(t))i(t) (21)

then

i(t) =
1
4ξ

(
1

x(t)
+

1
1− x(t)

)
dx(t)

dt
. (22)
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Fig. 5.     Simulation process of a linear memristor under the voltage source
for 4.21 s.
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t0 q(t0) = 0
∀t > t0

For  the  initial  time , ,  we integrate  both  sides  of
(22) for 

w t

t0
i(s)ds =

1
4ξ

w t

t0

(
1

x(s)
+

1
1− x(s)

)
dx(s)

ds
ds

q(t) =
1
4ξ

(
ln

x(t)
1− x(t)

− ln
x(t0)

1− x(t0)

)
. (23)

Let

c =
x(t0)

1− x(t0)
(24)

x(t)and solve (23) for , we have

x(t) =
ce4ξq(t)

1+ ce4ξq(t) . (25)

c x(t0) c
x(t)

From (24), we can find the determinant relation between the
constant  and .  In  other  words,  includes  the  history
information of . Now substitute (25) into (20), and we get

v(t) =
(
Roff + (Ron−Roff)

ce4ξq(t)

1+ ce4ξq(t)

)
i(t) (26)

cfrom which  can be calculated by

c = e−4ξq(t) v(t)−Roff i(t)
Roni(t)− v(t)

. (27)

x(t0)Therefore the initial state  of the nonlinear memristor is
obtained by solving (24),

c = e−4ξq(t) v(t)−Roff i(t)
Roni(t)− v(t)

x(t0) =
c

1+ c

(28)

i(t) q(t)
q(t) =

r
i(t)dt v(t) Roff

Ron ξ

where  is  the  current  source,  can  be  calculated  by
,  can  be  measured  by  the  voltmeter, ,

,  are known. Thus with only a voltmeter and related cal-
culation, the initial state of a memristor, under the assumption
of nonlinear dopant drift, can be obtained.

x(t0) = 0.53

i(3.67)
v(3.67)

q(3.67) = 1.8866×10−4C
i(t) t = 0 t = 3.67 s

The  result  of  the  HSPICE  simulation  agrees  with  the
method.  We  preset ,  and  then  run  the  circuit  in
Fig. 3(a) for 3.67 s. The parameters of the circuit are kept the
same  with  those  in Fig. 7.  The  simulation  result  is  shown  in
Fig. 8.  At  the  end  of  the  simulation,  the  current  and
voltage  of  the  memristor  are –701.0453 μA  and
–75.32032 mV,  respectively.  Because  the  current  source  is
sinusoidal,  we  can  calculate  by
integrating  from  to . Therefore

c = 1.1277, x(t0) = 0.53.

x(t0)
The  simulation  result  matches  the  value  we  predetermined

for .  That  means  the  method  is  applicable  for  the
calculation of initial  states of memristors under the nonlinear
dopant drift assumption.

D.  Nonlinear Dopant Drift With Voltage Excitation
x(t0)For nonlinear  memristors,  the initial  state  can also be

acquired through voltage excitation. From (20), we have

i(t) =
β

4Ron

1
x(t)(1− x(t))

dx(t)
dt

(29)

β = D2/µV i(t)where . Substitute  with (29) into (20), and we get

v(t) =
β

4

(
1

1− x(t)
+

Roff

Ron

1
x(t)

)
dx(t)

dt
. (30)
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Fig. 7.     The dynamical characteristics of the nonlinear HP memristor (a)
The nonlinear memristor’s fingerprint characteristic: bow-tie shape figure. (b)
The change of the state , applied current source  and corresponding
voltage  of a nonlinear memristor.
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Fig. 8.     Simulation process  of  a  nonlinear  memristor  under  the  current
source for 3.67 s.
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t = t0 φ(t) =
r

v(t)dt
r = Roff/Ron, φ(t0) = 0

∀t > t0

We apply the voltage source at  and let ,
 and .  Then  we  integrate  both  sides  of

(30) for 
w t

t0
v(s)ds =

β

4

w t

t0

(
1

1− x(s)
+ r

1
x(s)

)
dx(s)

ds
ds

φ(t) = − β
4

(ln(1− x(t))+ r ln x(t)

+ ln (1− x(t0))− r ln x(t0). (31)
Let

c =
xr(t0)

1− x(t0)
(32)

then (31) can be simplified to

ce
4φ(t)
β =

xr(t)
1− x(t)

. (33)

c x(t0)

c

c

The  relation  between  and  in  (32)  claims  that  the
initial  state  of  a  nonlinear  memristor  can  be  calculated  from
the integration constant . That is to say, the memory effect of
nonlinear  memristors  can  be  represented  by  an  integration
constant. Next we deduce how to calculate . Change (33) to

c = e
− 4φ(t)
β

xr(t)
1− x(t)

(34)

v(t) i(t)
β r φ(t)

v(t) φ(t) =
r

v(t)dt
x(t) t

where  is the applied voltage source,  can be measured
with  an  ammeter,  and  are  known,  can  be  integrated
from  the  applied  voltage ,  and .  The  state

 at time  can also be calculated from (20)

x(t) =
v(t)−Roff i(t)

(Ron−Roff)i(t)
. (35)

cCombining (34) and (35),  is obtained by

c = e
− 4φ(t)
β

(
v(t)−Roff i(t)

(Ron−Roff)i(t)

)r (Ron−Roff)i(t)
Roni(t)− v(t)

. (36)

x(t0)Then  from  (32),  can  be  acquired  by  solving  an
equation

xr(t0)+ cx(t0)− c = 0. (37)
r r

x(t0)
Since  (37)  is -order,  where  is  undetermined,  the

analytical  solution of  is  not  easy to get.  So a numerical
solution is recommended.

x(t0)
z(x)

In order to get the numerical solution of , an algorithm
is  presented  as  follows.  First,  construct  a  function 
according to (37)

z(x) = xr + cx− c. (38)
x(t0) ∈ (0,1) x(t0)
δ δ = 0.0001

δ
δ x(t0)

x z(x)
z(x)

For ,  iterate  from  0  to  1,  with  a  small
increment  (e.g., ) in each iteration. Notice that the
precision  of  the  numerical  solution  is  dependent  on :  the
smaller , the better the accuracy. During the iteration,  is
regarded  as  the  independent  variable  to  calculate  in
(38). Since the derivative of 

dz(x)
dx
= rxr−1+ c > 0

z(x) x
x̂

z(x̂) > 0 z(x̂) z(x̂−δ)

 is  monotonically  increasing  with  the  increment  of  in
every step. Continue the iteration until obtaining a  such that

,  then compare  the  absolute  value  of  and 

x
z(x) x(t0)

to  select  the  smaller  one.  As  a  result,  the  corresponding  to
this smaller  is the numerical solution of  we are look-
ing for.

v(t) = v0 sin(ωt) v0 = 1.2 V ω = 2π rad/s
t0 = 0 s

Ron = 100Ω r = 160 D = 10−6 cm µV = 10−10 cm2/sV
v(3.73) = −1.190538 V

i(3.73) = −243.4537 μA
φ(t)

t = 0 t = 3.73 s φ(3.73) = 0.2149 Wb

An HSPICE simulation is conducted to verify this approach.
The  simulation  circuit  is  the  same  with Fig. 3(b).
Predetermining the initial  state  of  the nonlinear  memristor  as
0.41,  we  apply  a  simple  sinusoidal  voltage  source

,  where , .  The  other
simulation  parameters  are  set  as  following: ,

, , , .  The
simulation lasted for 3.73 s and we get 
and . Since the applied voltage source
is sinusoidal,  can be calculated from the integration from

 to : .  Thus  we  can  apply
our mathematical method in (36)–(38) and obtain

c = 1.8818×10−62, x(t0) = 0.41.
x(t0)The  calculation  result  of  is  the  same  with  what  we

predetermined.  The  feasibility  of  our  method  has  been
examined from the simulation.

c x(t0)
c

x(t0)
c

c

Remark 2: From the analysis above, the integration constant
 includes  the  information  of  the  initial  value .  The

memory  is  attributed  to  the  integration  constant ,  which
means  that  the  initial  value  can  be  computed  by  the
integration constant . For different models of the memristors,
the  formulas  of  the  integration  constant  are  different.  The
accuracy of the initial value computation is dependent on the
model of the device.

E.  Memory Analysis for MRNNs
The  model  of  the  MRNNs  is  obtained  by  replacing  linear

resistors  with  memristors  and  can  be  described  by  the
following differential systems

u̇i(t) = −
ui(t)
Ri
+

n∑
j=1

f j(u j(t))−ui(t)
Mi j(t)

+ Ii (39)

ui(t) i = 1,2, . . . ,n
Ri,Mi j(t) i, j = 1,2, . . . ,n
where , ,  are  the  states  of  the  network,

, , are  linear  resistances  and  mem-
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Fig. 9.     Simulation process of  a  nonlinear  memristor  under  the voltage
source for 3.73 s.
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f j(s) Ii i, j = 1,2, . . . ,n s ∈ Rristances,  respectively;  and , ,  are
activation functions and bias currents, respectively.

According  to  the  property  of  memristor,  MRNNs  are  a
cluster  of  neural  networks.  When  the  power  is  off,  MRNNs
can store their historic state. In order to analyze their memory
property,  i.e.,  computing  initial  values  of  every  memristors,
we use Algorithm 1 for the memory analysis for MRNNs.

Algorithm 1 Memory analysis for MRNNS

n2 Mi j xi j(t0)
i, j = 1,2, . . . ,n n2

ui(t) i = 1,2, . . . ,n

For  the  MRNNs  with  memristive  synapses , ,
 represent  the  initial  states  of  memristive syn-

apses,  and   are  voltage  values,  and  the  states  of
MRNNs.

ui(t) i = 1,2, . . . ,n1. Derive analytical expressions of   with (39);
f (u j(t))−ui(t) i, j = 1,2, . . . ,n t2.  Compute ,  for  for  some  time ;

xi j(t0) i, j = 1,2, . . . ,n
3.  Use  the  above  developed  voltmeter-ammeter  method  to  obtain

, .

[1/Roff ,1/Ron]

ui(t0)
M ji(t0)

Ron Roff

Remark 3: From (39), coefficients of MRNN are variable in
the interval . If the MRNN can be convergent to
one  sub-network,  the  convergent  result  is  dependent  on  the
initial  value  of  the  network  state  and  the  initial  value

 of memristive synapses. It is necessary for us to locate
the  initial  state  of  memristive  synapses,  i.e.,  analyzing  the
memory property of the memristor. It is difficult to obtain an
accurate  value  of  the  voltage  between  two  terminals  of
memristors. In future works, we will design suitable observers
to  obtain  the  voltage  value  of  memristors.  Memristors  are
nano-scale nonlinear resistors with stationary  and . In
practical  applications,  we  need  to  connect  two  or  more
memristors in series or parallel to obtain different memristors
with  different  memristances.  Therefore,  it  is  necessary  to
analyze  the  memory  of  two  or  more  memristors  in  series  or
parallel.

III.  Memory Properties of Two Memristors
Interconnection

i(t) v(t) q(t)
φ(t)

n n > 1
n n

n
n

In  this  section,  we  will  discuss  memory  properties  of  two
series and parallel memristors. As discussed in Section II, one
measurement value (  or ) and one integration value (
or )  is  needed  to  determine  the  initial  state  of  the
memristor.  However,  we  do  not  need  to  conduct  two
measurements and two integrations for two memristors when
they  are  connected  in  series  or  parallel,  because  the
memristors connected in series share the same current, and the
ones in parallel share the same voltage. Our approach is valid
for  ( )  memristors  connected  in  series  and  parallel:  for
the  series  connection  case,  measurements  for  individual
voltages  and  an  integration  for  the  common  charge  are
required;  for  the  parallel  connection  case,  we  need 
measurements for  individual currents and an integration for
the  shared  magnetic  flux.  For  the  purpose  of  simplicity  and
without  loss  of  generality,  we  only  discuss  two  series  and
parallel memristors.

A.  Two Memristors in Series

M1 M2

Firstly  we discuss  the  memory property  of  two memristors
 and  in series and discuss the method in finding initial

M1 M2 x1(t0) x2(t0)
M1 M2 i(t)

v1(t) v2(t) M1
M2

M1 M2

M1
M2

M2
i(t) v(t) q(t)

M2

states  of  and .  Denote ,  as  initial  states  of
 and . Then one can attach a given current source  to

them and measure the corresponding voltage ,  of ,
. When two memristors are connected in series, we should

consider the memristors’ polarities as shown in Fig. 10. In the
situation  of Fig. 10(a),  and  connected  in  series  share
the same polarity with the current source and voltmeters. We
can  directly  apply  (28)  in  Section  II  to  each  memristor.  In
Fig. 10(b),  while  shares  the  same  polarity  with  the
excitation,  is  opposite  to  the  current  source.  Hence
calculation  methods  for  the  initial  state  of  should  be
adjusted. A negative sign should be added to ,  and 
to offset the polarity difference of .  Since the existence of
opposite  polarity  is  more  universal  for  series  connected
memristors, in this subsection, we only discuss the situation in
Fig. 10(b).

c1
x1(t0) M1 M2

If  the  discussed  memristors  are  under  the  assumption  of
linear dopant drift, we calculate the integration constant  and
the initial  state  of .  For ,  the memristor  opposite
to the one connected,

c̄ =
−v(t)+Roff i(t)
(Roff −Ron)i(t)

+ ξq(t)

x̄(t0) = c

(40)

c̄ x̄(t0)

c2 x2(t0) M2

where  and  are  the  integration  constant  and  the  initial
state of  a  memristor  connected  in  opposite  polarity,  respect-
ively. So  and  of  can be obtained following (40).

x1(t0) x2(t0)

i(t) = i0 sin(ωt) i0 = 200 μA ω = 2π rad/s

t0=0 s Ron=100Ω r=160 D=10−6 cm µV =10−10 cm2/sV
i(3.13) = 145.7937 μA

v1(3.13) v2(3.13)

q(3.13) = 1.0041×10−5C i(t)
t = 0 t = 3.13 s i(3.13) vk(3.13)

An  HSPICE  simulation  is  conducted  to  examine  this
method  for  linear  memristors  in  series.  We  predetermine  the
initial  states ,  to  be  0.15  and  0.75,  respectively.
The simulation circuit  is Fig. 10(b),  where the current  source

, ,  and .  The  other
simulation parameters are the same as the ones in Section II:

, , , , .
We  then  run  the  circuit  for  3.13 s. ,

 and  are  measured  as  1.752215 V  and
826.8759 mV,  respectively.  Since  the  current  source  is
sinusoidal, we get  by integrating 
from  to . With the presence of , 

 

(a)

(b)

i
V1 V2

M1 M2

i
V1 V2

M1 M2

 
Fig. 10.     Two memristors in series with (a) the same polarity and (b) the op-
posite polarity.
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q(3.13) k = 1,2 M1 M2and , ,  the initial states of ,  are obtained
according to (40),

c1 = 0.15, x1(t0) = 0.15, c2 = 0.75, x2(t0) = 0.75.

x1(t0) x2(t0)
The  results  are  coincident  with  the  values  we  preset  for

, , representing the validity of the methods (40).

c1
x1(t0) M1

M2

For  series  connected  memristors  under  the  assumption  of
nonlinear  dopant  drift,  the  integration  constant  and  the
initial  state  of  can  be  calculated  from (28).  As  for
the opposite connected , (28) should be adjusted to

c̄ = e4ξq(t)−v(t)+Roff i(t)
−Roni(t)+ v(t)

x̄(t0) =
c̄

1+ c̄
.

(41)

c2 x2(t0) M2Hence  and  of  can be obtained from (41).

x1(t0) x2(t0)

i0 = 800 μA

i(4.11) = 509.9392 μA v1(4.11) v2(4.11)

q(4.11) = 2.9219×10−5C
i(t) t = 0 t = 4.11 s i(4.11)

vk(4.11) q(4.11) k = 1,2 M1 M2

This  approach  for  series  connected  memristors  with  the
nonlinear  dopant  drift  can  also  be  verified  with  an  HSPICE
simulation. We preset the initial states ,  to be 0.21
and 0.47,  respectively.  The simulation circuit  and parameters
are  identical  to  the  ones  above  for  linear  memristors,  except
the  magnitude  of  the  current  source  is .  Run  the
circuit  for  4.11 s.  At  the  end  of  the  simulation,

,  and  are measured as
4.420901 V  and  6.407382 V,  respectively.  Since  the  current
source  is  sinusoidal,  we  can  get  by
integrating  from  to .  Now we have ,

 and , ,  the initial  states of ,  can
be calculated according to (28) and (41)

c1 = 0.2658, x1(t0) = 0.21, c2 = 0.8868, x2(t0) = 0.47.
x1(t0) x2(t0)The  predetermined  values  for ,  are  obtained

from the  simulation,  showing  the  feasibility  of  methods  (28)
and (41).

B.  Two Memristors in Parallel

M1 M2 v(t)
i1(t) i2(t) M1 M2

M1 M2

M2
M1
M2

v(t) i(t) φ(t)
M2

In this subsection, we study the property of two memristors
in parallel and give the formulas to calculate the initial states
of , .  A common voltage source  is  applied to them
and  the  corresponding  currents ,  of ,  can  be
measured. When two memristors are connected in parallel, we
should consider the memristors’ polarities as shown in Fig. 11.
In Fig. 11(a),  and  connected in parallel share the same
polarity with the voltage source and the ammeters. Equations
(17)  or  (36),  and  (37)  in  Section  II  can  be  applied  to  each
memristor.  In Fig. 11(b),  however,  is  opposite  to  the
voltage  excitation,  contrary  to  the  regular  connection  of .
Therefore  the  calculation  methods  for  the  initial  state  of 
should  be  adjusted  accordingly.  A  negative  sign  is  added  to

,  and  to compensate for  the polarity difference of
.  We  only  discuss  the  situation  in Fig. 11(b) in  this

subsection, because the existence of opposite polarity is more
general for parallel connected memristors.

c1
x1(t0) M1 c2

x2(t0) M2

First  we discuss the memristors  in parallel  under the linear
dopant  drift  assumption;  the  integration  constant  and  the
initial state  of  can be calculated from (17). While 
and  of  the  opposite  connected  memristor  can  be
obtained


c̄2 =

(
v(t)

Roni(t)

)2

− r2

2(r−1)
− φ(t)
β

x̄2(t0) =
−r+

√
r2+2(r−1)c2

1− r
.

(42)

x1(t0) x2(t0)

v(t) = v0 sin(ωt) v0 = 1 V ω = 2π rad/s

v(5.21) =
i1(5.21) i2(5.21)

φ(5.21) = 0.1196 Wb v(t) t = 0 t = 5.21

v(5.21) ik(5.21) φ(5.21) k = 1,2 M1
M2

A  parallel  memristors  circuit  simulation  is  conducted  to
examine this method. We preset the initial states , 
to be 0.33 and 0.67, respectively. The simulation circuit is in
Fig. 11(b),  where  the  applied  voltage  is  a  simple  sinusoidal
voltage  source , , .  The
other simulation parameters are the same with those in series
connection.  Run  the  simulation  for  5.21 s.  Then 
968.5831 mV,  and  are  measured  as
109.9511 μA and 118.6726 μA, respectively. We can also get

 by integrating  from  to s
since  the  voltage  source  is  sinusoidal.  With  the  existence  of

,  and , ,  the initial states of ,
 are obtained according to (17) and (42),

c1 = −44.1424, x1(t0) = 0.33, c2 = −71.5125, x2(t0) = 0.67.
The  correctness  of  our  approach  is  examined  from  the

consistency of the result and preset values.

c1 M1
x1(t0)

M2

Then we should consider the situation when two memristors
under the assumption of nonlinear dopant drift  are connected
in parallel. The integration constant  of  can be calculated
from  (36),  and  the  initial  state  can  be  obtained  from
solving  (37).  The  numerical  algorithm  to  determine  the
solution of (37) has been described in Section II-D. As for the
opposite connected , (36) should be adjusted to

c̄ = e
4φ(t)
β (
−v(t)+Roff i(t)
(Roff −Ron)i(t)

)r (Roff −Ron)i(t)
−Roni(t)+ v(t)

(43)

c2 M2 x2(t0)
M2

to get the integration constant  of . And , the initial
state of , can also be obtained from solving the equation

x̄r(t0)+ c̄x̄(t0)− c̄ = 0. (44)
We simulate the nonlinear memristors in parallel to test this

 

(a)

(b)

+ −
v

A1

A2

M1

M2

+ −
v

A1

A2

M1

M2

 
Fig. 11.     Two memristors in parallel with (a) the same polarity and (b) the
opposite polarity.
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x1(t0) x2(t0)

v0 = 1.2 V
v(5.77) = −1.190538 V i1(5.77)

i2(5.77)

φ(5.77) = 0.1670 Wb
v(t) t = 0 t = 5.77 s v(5.77)

ik(5.77) φ(5.77) k = 1,2 M1 M2

algorithm. Predetermining the initial states ,  to be
0.45 and 0.54, respectively. The circuit and parameters are the
same  with  the  previous  ones,  except  the  magnitude  of  the
voltage source . The simulation is lasted for 5.77 s.
At the end of the simulation, , 
and  are  measured  as –230.0400 μA  and
–115.2139 μA,  respectively.  Since  the  voltage  source  is
sinusoidal,  we  can  calculate  by
integrating  from  to .  Now we  get ,

 and , ,  the initial  states of ,  can
be  obtained  following  the  calculation  of  (36),  (43)  and  the
solution of (37), (44),

c1 = 5.7439×10−56, x1(t0) = 0.45
c2 = 3.3133×10−43, x2(t0) = 0.54.

The results are in accordance with the predetermined values.

x1(t0) x2(t0)

Remark  4: For  two  memristors  connected  in  series  or
parallel,  the  total  initial  memristance  can  be  computed  if  the
initial  values ,  are  obtained,  respectively.  We
focus on the memory analysis for two memristors in series or
parallel, i.e., the total initial memristance computation. This is
difference from the property analysis of two series or paprallel
memristors in the existing papers.

IV.  Concluding Remarks

c

In  this  paper,  we  discuss  the  memory  property  of
memristors  by  deriving  the  formula  for  the  initial  value
formula and the voltmeter-ammeter method. Then we analyze
two series and parallel memristors' memory. According to the
developed memory analysis method, we give the algorithm for
locating  the  initial  values  of  all  memristive  synapses  of  the
MRNN (39). Our analysis shows that the integration constant
 in the expression plays an important role in the memory of

the electronic device.  The accuracy may be improved for  the
computation  of  the  initial  values  if  the  state  observer  can  be
designed for the MRNN. This will be our future work.
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